46. For
$$i^2 = -1$$
, $(4 + i)^2 = ?$

F. 15 G. 17 H. 15 + 4*i* J. 15 + 8*i* K. 16 + 4*i*

- **29.** What is the product of the complex numbers (-3i + 4) and (3i + 4)?
 - A.
 - 1 7 В.

 - C. 25 D. -7 + 24*i*
 - $7+\overline{24}i$ Ē.

19. √x-5 is a real number if and only if: REAL VS. Imaginary Numbers

A. x≤-5

B. -5 < x < 0

C. x = 0

D. 0 < x < 5

This is the only Answer that will Always Produce RE.

This is the only Answer that will Always Produce RE.

48. In the complex plane, the horizontal axis is called the *real axis* and the vertical axis is called the *imaginary axis*. The complex number a + bi graphed in the complex plane is comparable to the point (a,b) graphed in the standard (x,y) coordinate plane. The *modulus* of the complex number a + bi is given by $\sqrt{a^2 + b^2}$. Which of the complex numbers z_1 , z_2 , z_3 , z_4 , and z_5 below has the greatest modulus?

1. What is the most simplified form of the expression below?

$$\sqrt{-49}$$

$$-\sqrt{49}$$

$$0 i\sqrt{49}$$

2. Simplify.

$$(-1+4i)-(-2+i)$$

$$-1 + 3i$$

$$-1 - 5i$$

$$\bigcirc$$
 1 + 5*i*

$$\bigcirc$$
 1 – 5*i*

$$\bigcirc$$
 1 + 3 i

3. Simplify.

$$\frac{6+2i}{3-3i}$$

$$\frac{2}{3} + \frac{4}{3}i$$

$$\bigcirc \frac{4}{3} + \frac{4}{3}i$$

$$\frac{2}{3} + \frac{2}{3}i$$

$$\frac{2}{3} - \frac{2}{3}i$$

4. What is the complex conjugate of the expression below?

$$6 - 2i$$

$$-6 + 2i$$

$$-6 - 2i$$

$$\circ$$
 6 – 2*i*

$$\bigcirc$$
 6 + 2*i*

Which of the following is equal to $-16i^6$?

Possible Answers:

-16

-4

16i

16

4

Complex numbers take the form a+bi, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.

Which of the following is equivalent to i^3 ?

Possible Answers:

i^{1000}		
i^{30}		
i^{23}		
i^{82}		
i		

Simplify: $\frac{9+4i}{4i}$

Possible Answers:

$$\frac{9}{4} - i$$

$$\frac{9}{4} + i$$

$$1 + \frac{9}{4}i$$

$$1 - \frac{9}{4}i$$

$$-\frac{9}{4}+i$$

Evaluate: $100 \div 5i \div 5i$ **Possible Answers:** 100*i* -4i-100

Evaluate: $100i \div (4i)^2$

Possible Answers:

$$-\frac{25}{4}$$

$$-\frac{25}{4}$$

$$-\frac{25}{2}$$

$$\frac{25}{4}i$$

$$\frac{25}{2}$$

Evaluate: $i \div (1+i)^2$

Possible Answers:

$$\frac{1}{2}$$

$$-\frac{1}{2}i$$

$$\frac{1}{2}i$$

2

2i

Simplify:
$$\frac{6+12i}{4}$$

Possible Answers:

$$6 + 3i$$

None of these answers are correct

$$\frac{3}{2} + \frac{12i}{4i}$$

$$\frac{3}{2} + 3i$$

$$\frac{3}{2} + 12i$$

Simplify by using conjugates: $\frac{4+2i}{-3-2i}$

Possible Answers:

$$\frac{-8-2i}{13}$$

$$\frac{-16+2i}{-13}$$

$$\frac{-8-2i}{5}$$

$$\frac{-16-2i}{13}$$

$$\frac{-16-2i}{5}$$

Simplify:

$$\frac{5+7i}{2+i}$$

Possible Answers:

$$1 + 3i$$

$$\frac{17}{5} + \frac{9}{5}i$$

$$\frac{5}{2} + \frac{7}{2}i$$

$$\frac{5}{7} + 2i$$

The solution of $\sqrt{x-3} > 2$ is the set of all real numbers x such that:

Possible Answers:

x > 7

x > 3

x < 7

x > 1

x > 5

Subtract a from b, given:

a = 3 + i

b = 4 - 2i

Possible Answers:

1 + 3i

-1 - 3i

3 + i

1 - 3i

-1 + 3i

Simplify the exponent,

 $(3^6)^2$.

Possible Answers:

 3^3

 3^8

 3^{12}

 3^4

Complex numbers take the form a+bi, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.

Simplify:

$$(2-2i)-(4-i)$$

Possible Answers:

6 - 3i

None of these

-2 - 3i

-2 - i

6-i

Which of the following equations simplifies into 4 + 2i?

Possible Answers:

$$0 + 6i + (-4 - 4i)$$

$$(0+7i)-(-4-5i)$$

$$(10 - i) - (6 - i)$$

$$(8-5i) + (-4+7i)$$

$$3 - (7 + 2i)$$

What is the solution of the following equation?

$$3(8+5i) + \frac{1}{2}(4+2i) = ?$$

Possible Answers:

13 + 6i

24 + i

12 + 7i

39 + 3i

26 + 16i

What is the sum of $\,a\,$ and $\,b\,$ given

$$a = 5 + 3i$$

and

$$b = 2 + i$$
?

Possible Answers:

11

7 + 4i

3 + 2i

8i

5 + 6i

Complex numbers take the form a+bi, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.

Simplify: (5 + 7i) + (17 - 4i)

Possible Answers:

-12 + 3i

22 - 3i

22 + 3i

-12 - 3i

22 + 11i

Complex numbers take the form a + bi, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.

Can you add the following two numbers: 3 + 7i and 8? If so, what is their sum?

Possible Answers:

Yes, 11 + 7i

Yes, 11 + 15i

Yes, 3 + 7i + 8

No, the two numbers cannot be added because one is complex and one is not.

Yes, 3 + 15i

What is the product of 7i - 3 and 6 + 2i

Possible Answers:

-18 + 14i

-32 + 48i

-32 + 36i

-18 + 36i

-4 + 36i

Simplify the following:

$$(9i + 12)(3i - 4)$$

Possible Answers:

-75

21

38

-64

-21

Complex numbers take the form $a+bi$, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the
complex number.

Distribute: 2(4 + 7i)

Possible Answers:

4 + 14i

None of these are correct

8 + 7i

6 + 7i

8 + 14i

Complex numbers take the form a + bi, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.

Distribute and solve: 5(3 + i) + 2(6 + 2i)

Possible Answers:

27 + 3i

27 + 9i

9 + 3i

9 + 9i

None of these answers are correct

Complex numbers take the form a + bi, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.

Simplify if possible. Leave no complex numbers in the denominator.

$$\frac{3+2i}{4-4i}$$

Possible Answers:

 $\frac{3+3i}{4}$

The complex number cannot be simplified

 $\frac{8+3i}{32}$

 $\frac{-2+4}{8}$

 $\frac{1+5i}{9}$

Simplify the following:

$$(4-3i)(4+3i)$$

Possible Answers: